We can find these probabilities using the standard normal table (or z-table), a portion of which is shown below. Recall a pseudo--definition of the limit of a function of one variable: "\( \lim\limits_{x\to c}f(x) = L\)'' means that if \(x\) is "really close'' to \(c\), then \(f(x)\) is "really close'' to \(L\). \[1. Answer: The function f(x) = 3x - 7 is continuous at x = 7. The mathematical way to say this is that

\r\n\"image0.png\"\r\n

must exist.

\r\n\r\n \t
  • \r\n

    The function's value at c and the limit as x approaches c must be the same.

    \r\n\"image1.png\"
  • \r\n\r\nFor example, you can show that the function\r\n\r\n\"image2.png\"\r\n\r\nis continuous at x = 4 because of the following facts:\r\n\r\nIf any of the above situations aren't true, the function is discontinuous at that value for x.\r\n\r\nFunctions that aren't continuous at an x value either have a removable discontinuity (a hole in the graph of the function) or a nonremovable discontinuity (such as a jump or an asymptote in the graph):\r\n